Chemian M - Werk and Berry

For this unit examination, you must be able to:

- explain how the use of indicators, pH paper or pH meters can be used to measure $H_3O^{\dagger}(aq)$
- o define Arrhenius (modified) acids as substances that produce H₃O⁺(aq) in aqueous solutions and recognize that the definition is limited
- define Arrhenius (modified) bases as substances that produce OH (aq) in aqueous solutions and recognize that the definition is limited
- **define** neutralization as a reaction between hydronium and hydroxide ions
- o differentiate, qualitatively, between strong and weak acids and between strong and weak bases on the basis of ionization and dissociation; i.e., pH, reaction rate and electrical conductivity
- o identify monoprotic and polyprotic acids and bases and compare their ionization/ dissociation
- o design an experiment to differentiate among acidic, basic and neutral solutions
- design an experiment to differentiate between weak and strong acids and between weak and strong bases
- determine the pH for a variety of solutions using indicators

Practice Questions

Sodium bicarbonate is used medicinally to counteract excess stomach acidity. How many moles of solid sodium bicarbonate would be needed to make 100 mL of a 0.660 mol/L solution suitable for use as an antacid?

A. 0.0660 mol

B. 0.152 mol

C. 66.0 mol

0.100 = 0.100

D. 152 mol

Numerical Response

1. What is the molar concentration of a caustic soda (sodium hydroxide) solution if 10 L of concentrated caustic soda solution is diluted to 400 L? The concentration of the stock solution is 19.1 mol/L. CIVI=COVD

Answer: 0.48 mol/L $(19.1)(10) = C_2(400)$ (Record your answer rounded to two decimal places in the numerical response section of your answer sheet.)

2. Which one of the following substances is an Arrhenius acid?

A.
$$C_6H_{12}(l)$$

$$\overline{{\bf D.}} {\rm CO_3}^{2-}({\rm aq})$$

3. If a nitric acid solution has a hydronium ion concentration of 2.67×10^{-4} mol/L, what is the pH of this solution?

DH=-109(2.67x10-4)

4. A perchloric acid solution has a pH of 1.23. Which row correctly shows the H₃O⁺(aq) ion concentration and the pOH, respectively?

| Row [H₃O⁺(aq)] | pOH | H₀O⁺ = 10

Row	[H ₃ O ⁺ (aq)]	pOH
(A./	5.9 x 10 ⁻² mol/L	12.77
В.	$9.0 \times 10^{-2} \text{ mol/L}$	10.23
C.	$1.7 \times 10^{-13} \text{ mol/L}$	11.23
D.	$3.5 \times 10^{-3} \text{ mol/L}$	12.77

5. The concentration of the strong base, sodium hydroxide, is 5.56×10^{-3} mol/L. Which row shows the pOH and pH of this solution, respectively?

	Row	pOH	pH		
	A.	11.745	2.255		
	B.)	2.255	11.745		
	C.	0.01799	13.9820		
	D.	13.9820	0.01799		

EOH-
$$J = 5.56 \times 10^{-3}$$

 $POH = -\log(5.56 \times 10^{-3})$
 $= 2.255$

brellases H+

- 7. A student places a magnesium strip into an unknown solution. Bubbles slowly start to appear where the strip is immersed in the solution. The student infers that the unknown solution is most likely:
 - A. a strong acid
 - B. a strong base
 - C. a weak acid
 - D. a weak base
- 8. Which one of the following is a polyprotic base?
 - **A.** OH⁻(aq)
 - **B.** $PO_4^{3-}(aq)$
 - C. HCO_3 (aq)
 - \mathbf{D} . $\mathbf{NH}_3(\mathbf{aq})$
- 9: Considering H₂SO₄(aq) and HSO₄⁻(aq), which one of the following statements is true?
 - A. They are both strong acids.
 - B. They are both diprotic.
 - Given the same volume and concentration, both neutralize the equivalent moles of NaOH.
 - **D.** $H_2SO_4(aq)$ acts only as an acid; $HSO_4^-(aq)$ can act as an acid or a base.
- 1. Determine the pH of a 7.53×10^{-4} mol/L calcium hydroxide solution. (3 marks)

$$Ca(0H)_{2} - b Ca^{2+} + 20H^{-}$$

 7.53×10^{-4} $2 \times 7.53 \times 10^{-4}$
 $POH = -log(1.506 \times 10^{-3}) = 2.85$
 $PIH = 14 - 2.87 = 11.178$

2. Determine the hydroxide ion concentration, OH (aq), in a solution of shampoo that has a pH of 8.842. (3 marks)

Hof 8.842. (3 marks)

$$PH = 8.842 \longrightarrow POH = 5.158$$

 $[OH^{-}] = 10^{-6.158}$
 $= 6.956 \times 10^{-9} \text{ mol/L}$

			*